21 research outputs found

    The Evolution of the VASIMR Engine

    Get PDF
    Our future deep space explorers face many daunting challenges but three of these loom high above the rest: Physiological debilitation, radiation sickness and psychological stress. Many countermeasures are presently being considered to ameliorate these difficulties however, in the long run, two important new developments are required: abundant space power and advanced propulsion. The development of the Variable Specific Impulse Magnetoplasma Rocket (VASIMR) addresses these important areas of need. The VASIMR is a high power, radio frequency-driven magneto plasma rocket, capable of very high exhaust velocities. In addition, its unique architecture allows in-flight mission-optimization of thrust and specific impulse to enhance performance and reduce trip time. A NASA-led, research team, involving industry, academia and government facilities is pursuing the development of this concept in the United States. The technology can be validated, in the near term, in venues such as the International Space Station, where it can also serve as both a drag compensation device and a plasma contactor for the orbital facility. Other near-Earth applications in the commercial and scientific satellite sectors are also envisioned. This presentation covers the present status of the technology, plans for its near term deployment and a vision for its future evolution

    Plasma Heating Simulation in the VASIMR System

    Get PDF
    The paper describes the recent development in the simulation of the ion-cyclotron acceleration of the plasma in the VASIMR experiment. The modeling is done using an improved EMIR code for RF field calculation together with particle trajectory code for plasma transport calculat ion. The simulation results correlate with experimental data on the p lasma loading and predict higher ICRH performance for a higher density plasma target. These simulations assist in optimizing the ICRF anten na so as to achieve higher VASIMR efficiency

    The Vasimr Engine: Project Status and Recent Accomplishments

    Get PDF
    The development of the Variable Specific Impulse Magnetoplasma Rocket (VASIMR) was initiated in the late 1970s to address a critical requirement for fast, high-power interplanetary space transportation. While not being a fusion rocket, it nevertheless borrows heavily from that technology and takes advantage of the natural topology of open-ended magnetic systems. In addition to its high power density and high exhaust velocity, VASIMR is capable of "constant power throttling" a feature, which allows in-flight mission-optimization of thrust and specific impulse to enhance performance and reduce trip time. A NASA-led, research team, involving industry, academia and government facilities is pursuing the development of this concept in the United States. The technology can be validated, in the near term, in venues such as the International Space Station, where it can also serve as both a drag compensation device and a plasma contactor for the orbital facility. Other near-Earth applications in the commercial and scientific satellite sectors are also envisioned. This presentation covers the evolution of the VASIMR concept to its present status, as well as recent accomplishments in our understanding of the physics. Approaches and collaborative programs addressing the major technical challenges will also be presented

    The VASIMR[registered trademark] VF-200-1 ISS Experiment as a Laboratory for Astrophysics

    Get PDF
    The VASIMR[R] Flight Experiment (VF-200-1) will be tested in space aboard the International Space Station (ISS) in about four years. It will consist of two 100 kW parallel plasma engines with opposite magnetic dipoles, resulting in a near zero-torque magnetic system. Electrical energy will come from ISS at low power level, be stored in batteries and used to fire the engine at 200 kW. The VF-200-1 project will provide a unique opportunity on the ISS National Laboratory for astrophysicists and space physicists to study the dynamic evolution of an expanding and reconnecting plasma loop. Here, we review the status of the project and discuss our current plans for computational modeling and in situ observation of a dynamic plasma loop on an experimental platform in low-Earth orbit. The VF-200-1 project is still in the early stages of development and we welcome new collaborators

    Plasma Dynamics

    Get PDF
    Contains reports on five research projects.U.S. Air Force - Office of Scientifc Research (Contract AFOSR 84-0026)National Science Foundation (Grant ECS 85-14517)Lawrence Livermore National Laboratory (Subcontract 6264005)National Science Foundation (Grant ECS 85-15032)U.S. Department of Energy (Contract DE-ACO2-78-ET-51013)U.S. Department of Energy (Contract DE-ACO2-ET-51013

    Plasma Dynamics

    Get PDF
    Contains table of contents for Section 2 and reports on four research projects.Lawrence Livermore National Laboratory Subcontract 6264005National Science Foundation Grant ECS 84-13173National Science Foundation Grant ECS 85-14517U.S. Air Force - Office of Scientific Research Contract AFOSR 89-0082-AU.S. Army - Harry Diamond Laboratories Contract DAAL02-86-C-0050U.S. Navy - Office of Naval Research Contract N00014-87-K-2001Lawrence Livermore National Laboratory Subcontract B108472National Science Foundation Grant ECS 88-22475U.S. Department of Energy Contract DE-FG02-91-ER-54109National Aeronautics and Space Administration Grant NAGW-2048U.S. Department of Energy Contract DE-AC02-ET-51013U.S. Department of Energy Contract DE-AC02-78-ET-5101

    Plasma Dynamics

    Get PDF
    Contains table of contents for Section 2 and reports on four research projects.Lawrence Livermore National Laboratory (Subcontract 6264005)National Science Foundation (Grant ECS 84-13173)National Science Foundation (Grant ECS 85-14517)U.S. Air Force - Office of Scientifc Research (Contract AFOSR 84-0026)U.S. Army - Harry Diamond Laboratories (Contract DAAL02-86-C-0050)U.S. Navy - Office of Naval Research (Contract N00014-87-K-2001)U.S. Department of Energy (Contract DE-AC02-78-ET-51013)National Science Foundation (Grant ECS 85-1 5032

    Plasma Dynamics

    Get PDF
    Contains table of contents for Section 2 and reports on four research projects.Lawrence Livermore National Laboratory Subcontract 6264005National Science Foundation Grant ECS 84-13173National Science Foundation Grant ECS 85-14517U.S. Air Force - Office of Scientific Research Contract AFOSR 84-0026U.S. Army - Harry Diamond Laboratories Contract DAAL02-86-C-0050U.S. Navy - Office of Naval Research Contract N00014-87-K-2001National Science Foundation Grant ECS 85-15032National Science Foundation Grant ECS 88-22475U.S. Department of Energy Contract DE-AC02-ET-5101
    corecore